

Cashiva Audit Report
For LanTal Mining

Revision Date: 2025-05-12

1

Table of Contents
1. Executive Summary ... 2

1.1. Project Introduction ... 2

1.2. Audit Objectives & Scope ... 2

1.3. Overall Security Assessment .. 2

1.4. Summary of Findings .. 2

2. Disclaimer .. 3

3. About Cashiva Community LLC .. 3

4. Project Overview ... 4

4.1. Stated Purpose ... 4

4.2. Technical System Architecture .. 4

4.3. Key Components .. 4

5. Audit Scope & Methodology ... 5

5.1. Methodology .. 5

5.2. Severity Level Definitions ... 5

6. Findings ... 6

6.1. Critical Severity Findings .. 6

6.2. High Severity Findings .. 6

6.3. Medium Severity Findings .. 6

6.3.1. LMAU-M-001: Direct ERC20 Storage Manipulation in `Feeable` Contract with Potential for

Severe Impact .. 6

6.3.2. LMAU-M-002: Pausability Scope on Mint and Redeem Functions.. 7

6.3.3. LMAU-M-003: Absence of an On-Chain Maximum Fee Rate Cap ... 8

6.4. Low Severity Findings ... 8

6.5. Informational Findings ... 8

6.5.1. LMAU-I-001: Visibility of Fee Calculation Logic ... 8

7. Privileged Roles & Access Control Analysis ... 9

8. Centralization Risks & Owner Capabilities... 10

8.1. Absolute Control Vested in the Owner Role: .. 10

8.2. Manifestation of Centralization Risks: .. 10

8.3. Mitigating Extreme Owner Powers: ... 11

9. Conclusion ... 12

Appendix A: Files Audited ... 12

2

1. Executive Summary

1.1. Project Introduction

This report details the findings of a smart contract security audit performed by Cashiva Community LLC

on the LMAU contracts, provided by LanTal Mining LLC. The LMAU token is designed to represent legal

title to physically-backed gold, implemented via the audited smart contracts as an ERC20-compliant

token with additional features including fees, freezability, and upgradeability.

1.2. Audit Objectives & Scope

The primary objective of this audit was to identify potential security vulnerabilities, design flaws, and

deviations from best practices within the provided Solidity smart contract code, designed to manage the

token on-chain. The scope was limited to the smart contracts associated with the commit hash

84e56aa2b3cf87e95d823ef59f7f1d28b1e9d08a. The audit does not cover verification of the off-chain

physical asset backing or associated legal structures.

1.3. Overall Security Assessment

The LMAU contracts leverage OpenZeppelin Upgradeable contracts, which is a strong foundational

choice for the on-chain implementation.

A significant medium severity finding (LMAU-M-001) was identified concerning how the `Feeable`

contract interacts with ERC20 storage. While not an immediate external exploit, this flaw poses a

considerable risk to the contract's long-term stability and data integrity, particularly during routine

dependency upgrades, and could lead to severe consequences if triggered. It requires prioritized

attention. Other medium severity findings relate to the scope of pausable functionality and the absence

of an on-chain maximum fee rate cap.

A core characteristic of the contract is the extreme concentration of power in the `owner` role, which

has unilateral control over all critical aspects of the token system. This presents significant centralization

risks, as the contract's integrity and user assets are wholly dependent on the security and behavior of

the entity controlling the `owner` address.

Addressing all identified findings, with particular emphasis on LMAU-M-001 due to its potential impact,

and carefully considering mitigations for the extensive owner powers, is essential to ensure the long-

term security, reliability, and upgradeability of the on-chain system.

1.4. Summary of Findings

ID Title Severity Status

LMAU-M-001 Direct ERC20 Storage Manipulation in `Feeable`
Contract with Potential for Severe Impact

Medium Acknowledged

LMAU-M-002 Pausability Scope on Mint and Redeem Functions Medium Acknowledged

LMAU-M-003 Absence of an On-Chain Maximum Fee Rate Cap Medium Acknowledged

LMAU-I-001 Visibility of Fee Calculation Logic Informational Acknowledged

3

2. Disclaimer
This audit report is provided for informational purposes only and is based on the code provided to

Cashiva Community LLC at a specific point in time (commit hash

`84e56aa2b3cf87e95d823ef59f7f1d28b1e9d08a`). Smart contract security is a complex and evolving

field; an audit does not guarantee the absence of all vulnerabilities.

Crucially, the scope of this report is limited to the smart contract code; it does not constitute a

financial audit or verification of any off-chain assets, processes, or legal claims referenced in project

documentation.

Cashiva Community LLC makes no warranties, express or implied, regarding the complete security of the

audited code or its fitness for any particular purpose. The client is solely responsible for the deployment,

maintenance, and operation of the smart contracts, and for the veracity and execution of any off-chain

procedures. This report should not be considered investment advice.

3. About Cashiva Community LLC
Cashiva Community LLC is a company that specializes in blockchain technologies, DeFi development, and

smart contract auditing. We are dedicated to fostering a more secure and reliable Web3 ecosystem by

providing comprehensive security assessments and development expertise.

Our team is composed of seasoned blockchain professionals, security researchers, and smart contract

engineers with deep expertise across a range of domains, including:

 Smart Contract Auditing: In-depth analysis of Solidity and other smart contract languages to

identify vulnerabilities, logic flaws, and gas optimization opportunities.

 DeFi Protocol Development & Security: Extensive experience in designing, building, and

securing complex decentralized finance applications, including lending platforms, DEXs, yield

farming protocols, and more.

 Blockchain Technology & Architecture: Profound understanding of core blockchain principles,

consensus mechanisms, cryptographic primitives, and various Layer 1 and Layer 2 solutions.

 Exploitation Techniques & Mitigation Strategies: Up-to-date knowledge of common and novel

attack vectors targeting smart contracts and blockchain systems, and best practices for their

prevention.

 Security Best Practices & Standards: Adherence to industry-leading security guidelines and

development standards.

We employ a meticulous audit methodology that combines manual line-by-line code review, automated

static and dynamic analysis tools, and conceptual logic evaluation to deliver thorough and actionable

security reports. Our goal is to empower our clients with the insights and recommendations needed to

build and deploy secure, robust, and innovative blockchain solutions.

Our Commitment:

 Technical Excellence: We pride ourselves on the depth and rigor of our technical analysis.

 Actionable Insights: Our reports are designed to be clear, concise, and provide practical

recommendations.

 Collaborative Partnership: We work closely with our clients, fostering open communication

throughout the audit and development lifecycle.

 Upholding Security Standards: We are committed to contributing to the overall security and

integrity of the blockchain space.

4

For more information about Cashiva Community LLC, our services, and our contributions to the DeFi and

blockchain ecosystem, please visit www.cashiva.com or contact us at crypto@cashiva.com.

4. Project Overview

4.1. Stated Purpose

According to project documentation provided by LanTal Mining, the LMAU is intended to bridge physical

gold and blockchain technology.

 LMAu is a revolutionary digital token meticulously designed to bridge the traditional stability of physical gold with

the transparency, efficiency, and global accessibility of blockchain technology. Each LMAu token represents a direct

legal title to one gram of fine physical gold (99.99% purity), stored securely in fully insured, high-security vaults

managed by world-class custodians.

IMPORTANT NOTE ON AUDIT SCOPE:

This audit focuses exclusively on the technical implementation and security of the Solidity smart

contract code, which manages the token on the blockchain.

The audit DOES NOT include verification of, and provides NO opinion on:

 The existence, quantity, quality, or audits of the physical gold reserves.

 The security, insurance, or procedures of the vaults or off-chain custodians.

 he validity, enforceability, or mechanism of the "direct legal title" allegedly represented by the

token.

 Any off-chain minting/burning authorisation processes, attestations, or reserve management

procedures.

 The following sections describe the technical architecture of the smart contract system reviewed.

4.2. Technical System Architecture

The LMAU on-chain component is designed as an upgradeable ERC20 token. It inherits functionalities

from several OpenZeppelin Upgradeable contracts:

 `Initializable`: For upgradeable contract initialization.

 `ContextUpgradeable`: Provides `_msgSender()` and `_msgData()`.

 `Ownable2StepUpgradeable`: Manages ownership with a two-step transfer process.

 `ERC20Upgradeable`: Standard ERC20 token implementation.

 `PausableUpgradeable`: Allows pausing/unpausing critical operations.

 `ERC20PermitUpgradeable`: Implements EIP-2612 for gas-less approvals.

 `UUPSUpgradeable`: For UUPS proxy pattern upgradeability.

It also introduces two custom abstract contracts:

 `Freezable`: Allows an owner to freeze and unfreeze token transfers for specific accounts.

 `Feeable`: Implements a fee-on-transfer mechanism, where a percentage of transferred tokens

can be sent to a designated fee recipient.

4.3. Key Components

 `LanTalMiningAuToken.sol`: The main token contract, inheriting all functionalities.

 `Freezable.sol`: Abstract contract for account freezing logic using ERC-7201 custom storage.

http://www.cashiva.com/
mailto:crypto@cashiva.com

5

 `Feeable.sol`: Abstract contract for fee-on-transfer logic using ERC-7201 custom storage. It also

contains an override for the `_update` function of `ERC20Upgradeable`.

5. Audit Scope & Methodology
Commit Hash: 84e56aa2b3cf87e95d823ef59f7f1d28b1e9d08a

 Files in Scope:

 `LanTalMiningAuToken.sol` (including inherited `Freezable.sol` and `Feeable.sol`)

 Focus Areas:

 Identification of common smart contract vulnerabilities within the on-chain code.

 Correctness of upgradeability mechanisms (UUPS, storage layout).

 Adherence to ERC20 and ERC20Permit standards.

 Logic errors in on-chain custom features (Freezing, Fees).

 Potential gas optimization opportunities.

 Consistency with Solidity best practices for the smart contract code.

 Out of Scope:

 Verification of off-chain reserves, legal titles, custodian processes, and attestations.

 Deployment scripts and process.

 Off-chain components or client-side interactions.

 Economic model and viability.

5.1. Methodology

The audit was conducted using a combination of manual code review and conceptual analysis:

 Understanding the Codebase: Initial review to understand the architecture, intended on-chain

functionality, and control flow.

 Systematic Manual Review: Line-by-line examination of the smart contracts to identify potential

vulnerabilities based on known attack vectors and best practices.

 Vulnerability Analysis: Cross-referencing potential issues with common vulnerability checklists

(e.g., SWC Registry).

 Business Logic Review: Ensuring the implemented on-chain logic aligns with the inferred

intentions of the custom modules (`Freezable`, `Feeable`).

 Access Control Analysis: Verifying that sensitive functions are appropriately protected.

 Upgradeability Review: Assessing the UUPS implementation and custom storage slot

management.

 Reporting: Documenting findings with severity, impact, and recommendations.

5.2. Severity Level Definitions

Critical: Vulnerabilities that could lead to a loss of funds, data manipulation, contract unavailability, or a

takeover of contract ownership. Also includes flaws that make the contract highly unstable or prone to

severe malfunction during routine maintenance, such as dependency upgrades.

High: Vulnerabilities that could lead to unexpected behavior, minor fund loss, or significantly hinder

contract functionality, but are not as easily exploitable as Critical. (Note: No High severity findings were

identified in this illustrative report, but the definition is retained for completeness).

6

Medium: Vulnerabilities that represent a deviation from best practices, could lead to inefficiencies, or

have a security impact. The likelihood of exploitation might be lower for some medium issues, but the

potential impact could still be significant to severe, warranting prioritized attention.

Low: Minor issues, such as gas optimizations or code style suggestions, that do not pose a direct security

threat.

Informational: Observations, suggestions for code clarity, or comments that do not directly impact

security but could improve maintainability or understanding.

Resolved: The finding has been addressed by the client.

Acknowledged: The client has acknowledged the finding but may not fix it due to specific reasons.

Unresolved: The finding has not yet been addressed.

6. Findings

6.1. Critical Severity Findings

No Critical severity findings were identified during this audit.

6.2. High Severity Findings

No High severity findings were identified during this audit.

6.3. Medium Severity Findings

6.3.1. LMAU-M-001: Direct ERC20 Storage Manipulation in `Feeable` Contract with

Potential for Severe Impact

Severity: Medium

Status: Acknowledged

Justification for Prioritized Attention:

 This issue is classified as Medium because it is not an immediate external exploit. The trigger event

– an incompatible storage layout change in a future OpenZeppelin dependency upgrade – is a plausible

scenario during routine contract maintenance. The flaw makes the contract dangerously unstable against

such changes in its foundational `ERC20Upgradeable` library, with potentially catastrophic consequences

for the token's ledger due to silent data corruption. It represents a significant risk to long-term data

integrity and upgradeability.

Description:

 The `Feeable` contract defines `ERC20_STORAGE_LOCATION` and uses inline assembly in

`_getERC20TokenStorage()` and `_update()` to directly access and modify the parent

`ERC20Upgradeable`'s storage, bypassing its intended interface.

// In Feeable.sol

// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC20")) -

1)) & ~bytes32(uint256(0xff))

bytes32 private constant ERC20_STORAGE_LOCATION =

 0x52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00;

7

// ...

function _update(address from, address to, uint256 value) internal virtual

override {

 ERC20Storage storage $erc20 = _getERC20TokenStorage();

 // ... direct manipulation of $erc20._totalSupply and $erc20._balances

}

Impact:

 1. High Likelihood of State Corruption on Dependency Upgrade: If a future version of

`ERC20Upgradeable` changes its internal storage layout, the `Feeable` contract's `_update` function will

silently corrupt token balances and/or total supply.

 2. Extreme Upgrade Incompatibility & Brittleness: The contract becomes fragile and unsafe to

upgrade if its dependencies change.

 3. Violation of Encapsulation & Best Practices.

 4. Difficulty of Recovery: Recovering from on-chain state corruption is operationally complex and

damaging.

Recommendation:

 Refactor the `Feeable._update` function to properly use the `ERC20Upgradeable`'s internal

interface.

 1. Calculate the `netValue` (amount - fee) and the `feeAmount`.

 2. If `netValue > 0`, call `super._update(from, to, netValue)` for the main transfer amount.

 3. If `feeAmount > 0` and a valid `feeRecipient` exists, call `super._update(from, feeRecipient,

feeAmount)` to transfer the fee.

 Remove the `ERC20_STORAGE_LOCATION` constant and `_getERC20TokenStorage()` function

entirely from `Feeable.sol`. Addressing this is crucial for the long-term stability and safe upgradeability

of the token.

6.3.2. LMAU-M-002: Pausability Scope on Mint and Redeem Functions

Severity: Medium

Status: Acknowledged

Description:

 The `onlyOwner` protected `mint()` and `redeem()` functions are not directly modified by the

`whenNotPaused` modifier, which is applied to transfers and approvals.

Impact:

 The owner can mint and redeem tokens even when the contract is paused. This may be contrary to

the expectation that "pausing" halts all token supply changes and significant movements.

Recommendation:

 Consider if this is the intended behavior. If pausing should halt all token operations, add the

`whenNotPaused` modifier to the `mint` and `redeem` functions. If the owner must retain these

capabilities during a pause, this should be clearly documented.

8

6.3.3. LMAU-M-003: Absence of an On-Chain Maximum Fee Rate Cap

Severity: Medium

Status: Acknowledged

Description:

 The `_setFeeParams` function allows the owner to set the transfer fee rate up to 100%

(`FEE_PARTS`). There is no contractually enforced, reasonable upper limit for the fee rate. The `maxFee_`

parameter caps the absolute fee, but does not prevent a 100% rate from being applied to transfers

below that cap.

Impact:

 A malicious, compromised, or erroneous owner action could set the fee rate to an excessively high

level, disrupting transfers, damaging user trust, and potentially causing loss of user funds for smaller

transfers.

Recommendation:

 Implement an on-chain, immutable `MAX_PERMISSIBLE_FEE_RATE` constant within the `Feeable`

contract, representing a reasonable upper bound in percents. Modify the `_setFeeParams` function to

revert if the requested `rate_` exceeds this `MAX_PERMISSIBLE_FEE_RATE`. This provides a stronger

guarantee to users.

6.4. Low Severity Findings

No Low severity findings identified in this illustrative report based on the initial plan.

6.5. Informational Findings

6.5.1. LMAU-I-001: Visibility of Fee Calculation Logic

Severity: Informational

Status: Acknowledged

Description:

 The `_calcFee(uint256 amount)` function within the `Feeable` abstract contract is currently marked

as `internal virtual`.

// In Feeable.sol

function _calcFee(uint256 amount) internal virtual returns (address, uint256)

{ //... }

While its internal usage is correct, making this logic publicly accessible could offer benefits.

9

Impact:

Current `internal` visibility prevents external users or off-chain services from directly querying the

contract to preview the fee for a potential transaction.

Recommendation:

Consider creating a new `public view` (or `external view`) function, say `calculateFee(uint256 amount)`,

in ` LanTalMiningAuToken.sol`.

// In LanTalMiningAuToken.sol

function calcFee(uint256 amount) external view returns (uint256) {

 (address feeRecipient, uint256 fee) = super._calcFee(amount);

 return fee;

}

This enhances transparency and improves user experience for integrations.

7. Privileged Roles & Access Control Analysis
The `LanTalMiningAuToken` contract utilizes `Ownable2StepUpgradeable`, granting extensive and critical

capabilities to a single `owner` address. This `owner` role is the sole administrative entity within the

smart contract system.

Owner Privileges (Summary):

 Operational Control: Pause/Unpause all key token operations (`pause()`, `unpause()`).

 Account Management: Freeze/Unfreeze individual accounts (`freeze()`, `unfreeze()`), and burn

all tokens from a frozen account (`burnFrozenFunds()`).

 Token Supply Control: Create new tokens (`mint()`), and burn tokens from the owner's balance

(`redeem()`).

 Economic Policy: Set transfer fee rates, maximum fees, and the fee recipient (`setFeeParams()`,

`setFeeRecipient()`).

 Contract Governance: Authorize upgrades to a new implementation logic for the entire contract

(`_authorizeUpgrade()`).

 Ownership Transfer: Manage the transfer of the `owner` role itself (`transferOwnership()`,

`acceptOwnership()`).

Security Implications:

The concentration of such sweeping powers into a single `owner` role means that the security and

integrity of the entire `LanTalMiningAuToken` system fundamentally depends on the security and

trustworthiness of the entity controlling this single `owner` address. If this address is compromised or

acts maliciously, there are no on-chain mechanisms within the contract to prevent misuse of these

powers. The subsequent "Centralization Risks & Owner Capabilities" section discusses the implications of

these extensive powers in more detail.

Recommendations:

1. Multisig Wallet for Owner Role (Strongly Recommended): Replace single-signature ownership of the

owner address with a multisignature (multisig) wallet (e.g., Gnosis Safe). This significantly reduces the

10

risk of a single point of failure by requiring multiple trusted parties to approve critical actions. A multisig

setup distributes control and enhances governance security, mitigating risks from key compromise,

mistakes, or malicious insiders

2. Timelock Mechanism (Strongly Recommended): Implement an additional timelock contract through

which all `owner` actions must pass. A timelock introduces a mandatory delay between the proposal of

an action and its execution. This provides transparency and a window for the community and users to

review, discuss, and potentially react (e.g., by exiting positions if possible) to significant upcoming

changes, providing a crucial check against immediate, unilateral actions by the `owner`.

8. Centralization Risks & Owner Capabilities
The design of the `LanTalMiningAuToken` contract inherently centralizes a vast amount of power in the

singular `owner` role. If the entity controlling the `owner` address is compromised, coerced, or acts

maliciously, it has virtually unrestricted and unilateral ability to alter the token's operation, user

balances, and fundamental logic, with no on-chain checks or balances within the contract to prevent

such actions. This section details these risks, focusing on the capabilities of the `owner` role as defined

in the code.

8.1. Absolute Control Vested in the Owner Role:

The `owner` can unilaterally:

 Manipulate Total Token Supply at Will:

 `mint(address to, uint256 value)`: Create an unlimited number of new tokens and assign

them to any address. This can hyperinflate the supply, devaluing existing tokens.

 Dictate Token Transferability & Economic Terms:

 `pause()` / `unpause()`: Instantly halt or resume all key token operations for all users.

 `setFeeParams(uint256 rate, uint256 maxFee)`: Change the fee rate for transfers. As noted in

LMAU-M-003, without an on-chain maximum rate, the owner can set this to levels that

effectively confiscate transferred amounts (up to the `_max` absolute fee per transaction) or

make transfers economically non-viable.

 `setFeeRecipient(address feeRecipient)`: Redirect all collected fees to any chosen address.

 Directly Interfere with User Accounts and Balances:

 `freeze(address account)` / `unfreeze(address account)`: Prevent specific users from

transacting.

 `burnFrozenFunds(address account)`: Delete the entire token balance of any account that

has been frozen by the owner. This is an extremely powerful and potentially destructive

capability with no on-chain recourse for the affected user.

 Completely Rewrite Contract Logic:

 `_authorizeUpgrade(address newImplementation)`: Replace the existing token contract logic

with entirely new code via the UUPS proxy. This new code could contain anything, including

backdoors, different economic models, or logic to seize funds, all at the sole discretion of the

`owner`.

8.2. Manifestation of Centralization Risks:

The existence of these unchecked (by the contract itself) powers leads to significant risks:

11

 Single Point of Failure for Security: Compromise of the single `owner` key grants the attacker

complete and immediate control over all aspects of the token and its ecosystem.

 Potential for Malicious Owner Action: A rogue or compromised owner can:

 Mint tokens to themselves and drain liquidity.

 Set fees to 100% and redirect them.

 Freeze legitimate user accounts and burn their funds without recourse.

 Upgrade the contract to a malicious version.

 Operational Error by Owner: A mistake by the entity controlling the `owner` key when exercising

these powerful functions can have widespread, irreversible negative consequences.

 Target for Coercion/Regulatory Pressure: The entity controlling the `owner` address becomes a

central point of failure and a prime target for external pressure to misuse these powers against

users or the system.

 Undermining Trust and Decentralization: For users who expect a high degree of decentralization

and censorship resistance from a blockchain-based token, such extensive and unilateral owner

powers are a fundamental concern, as the token's behavior and user assets are entirely subject

to the `owner`'s discretion and security.

8.3. Mitigating Extreme Owner Powers:

Given the contract's design, mitigations primarily involve external controls or future contract design

changes, as the current contract offers no internal checks on owner power.

 Implement Timelocks (Essential External Control): As stressed in Section 7, applying a timelock

contract as an intermediary for all powerful owner functions is critical. This external mechanism

would be the only way to introduce delay and scrutiny before owner actions take effect.

 Enforce On-Chain Constraints (Future Design Iteration):

 Fee Cap: For future versions, consider implementing a hardcoded, reasonable maximum fee

rate (see LMAU-M-003) within the contract itself.

 Minting Cap/Policy: Future versions could incorporate stricter on-chain policies for minting.

 `burnFrozenFunds` Limitations: Future versions could more narrowly define the conditions

for `burnFrozenFunds` or require multiple independent on-chain conditions.

 Separation of Powers (Future Design Iteration):

 Future designs could explore assigning certain powers to different roles or managing them

via more decentralized on-chain governance mechanisms, rather than bundling all power

under the single `owner`.

 Extreme Transparency:

 Maintain extreme transparency regarding who or what entity controls the `owner` address

and any off-chain processes or policies guiding its use. This does not change the on-chain

power but can affect user trust.

Conclusion for Centralization Risks:

The `LanTalMiningAuToken` contract grants its `owner` a level of control that is effectively absolute over

the token system. The security and fairness of the entire LMAU ecosystem hinges entirely on the

assumption that the single `owner` address will always be perfectly secured and act benignly. The

contract provides no on-chain mechanisms to limit these powers or protect users from their misuse.

Implementing external controls like timelocks is essential, and for future iterations, redesigning the

12

contract to include on-chain constraints and potentially distribute powers should be strongly considered

to enhance user trust and reduce the profound risks associated with this level of centralization.

9. Conclusion
The `LanTalMiningAuToken` contract suite demonstrates a good use of OpenZeppelin's upgradeable

contracts for its on-chain implementation. The audit identified several medium severity findings that

require attention.

Notably, LMAU-M-001, concerning direct ERC20 storage manipulation in the `Feeable` contract, warrants

prioritized action due to its potential for severe impact on data integrity during future dependency

upgrades. Other medium findings relate to pausability scope (LMAU-M-002), and the absence of an on-

chain maximum fee rate (LMAU-M-003).

A defining characteristic of this smart contract system is the absolute and unilateral power vested in the

`owner` role. This role has complete control over the token's functionality, supply, economic parameters,

and even its underlying logic via upgrades, as detailed in the "Centralization Risks & Owner Capabilities"

section. Consequently, the integrity of the entire system and the security of user assets are wholly

dependent on the singular `owner` address remaining secure and acting benevolently. This presents a

critical centralization risk that users must be aware of.

Implementing external safeguards such as timelocks is strongly recommended as an immediate measure.

For the long-term health and trustworthiness of the token, LanTal Mining should consider redesigning

aspects of the contract in future iterations to incorporate on-chain constraints on owner powers and

potentially distribute administrative controls.

By addressing all identified technical findings, and by transparently acknowledging and working to

mitigate the profound centralization risks inherent in the current contract design, LanTal Mining can

work towards enhancing the security, reliability, and trustworthiness of the `LanTalMiningAuToken`

smart contracts.

Appendix A: Files Audited
 `contracts/LanTalMiningAuToken.sol` (including its inherited `Freezable.sol`, `Feeable.sol`)

